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1.I. Introduction

The term digital watermarking refers to the process of embedding a “secret” digital signal (hidden

message) in another digital signal (image or audio) called “cover” or “host.” Two applications of

watermarking are a) image/audio authentication and b) steganography, which is an attempt to establish

covert communication between trusting parties.

The first step in the design of a watermarking system is the embedding process. This is a crucial

task since watermarking properties and detector design and performance depend directly on the way the

watermark is inserted within the host data. While each specific watermarking application has its own

requirements [1], [2], the broad objective of most steganographic applications is a satisfactory trade-off

between hidden message resistance to noise/disturbance, information delivery rate, and host distortion.

Message embedding can be performed either directly in the time (audio) or spatial (image) domain

[3]-[6] or in a transform domain (for example, for images we may consider full-frame discrete Fourier

transform (DFT) [7]-[10], full-frame discrete cosine transform (DCT) [11], block DFT or DCT [12], [13],

or wavelet transforms [14]-[16]). Direct embedding in the original host signal domain may be desirable

for system complexity purposes, while embedding in a transform domain may take advantage of the

particular transform domain properties [17].

In this present work, we focus our attention on transform domain spread-spectrum (SS) embedding

methods for image steganography. Once the transform embedding domain has been selected, the hidden

message can be applied to the host data through an additive or multiplicative rule [5]-[8], [12], [18]. In the

literature, additive spread-spectrum embedding methods use an amplitude modulated pseudorandom

signature to deposit one information symbol across a group of host data coefficients [5], [7], [12] or

a linearly transformed version of the host data coefficients [18]. In multiplicative rule SS embedding,

message data multiply host data coefficients [8].

Spread-spectrum embedding algorithms for blind image steganography (that is, hidden message

recovery without knowledge of the original image) have been based on the understanding that the

host signal acts as a source of interference to the secret message of interest. Yet, it should also be

understood that this interference is known to the message embedder. Such knowledge can be exploited

appropriately to facilitate the task of the blind receiver at the other end and minimize the recovery error

rate for a given host distortion level, minimize host distortion for a given target recovery error rate,

maximize the Shannon capacity of the covert steganographic channel, etc. Indeed, if we were to place the

steganography application in an information theoretic context, it could be viewed as a communications-
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with-side-information problem [19]-[21]. Optimized embedding methods can facilitate host interference

suppression at the receiver side when knowledge of the host signal is adequately exploited in system

design.

In this paper, for any given image, (block) transform domain, and host bins, we derive the additive

embedding signature that maximizes the output signal-to-interference-plus-noise ratio (SINR) of the

linear maximum SINR receiver filter. We establish that, under a (colored) Gaussian assumption on the

host bins, this same signature minimizes the receiver bit error rate (BER) at any mean square (MS)

image distortion level, minimizes -conversely- the MS image distortion at any target BER, and maximizes

the Shannon capacity of the covert link. We then generalize our findings to cover joint signature and

linear host data projection optimization along the same lines. In this present work, we consider only

scalar parameterized host data projection as in [18]. Finally, we extend signature-only as well as joint

signature and host-projection optimization to multiuser (multiple signature) embedding. Our emphasis

is directed primarily toward low complexity, sequential, conditional multiuser optimization.

The rest of the paper is organized as follows. Section II presents our core signature and embedding

optimization results. These results are generalized to multiple signature embedding in Section III.

Section IV is devoted to experimental studies and comparisons. A few concluding remarks are given in

Section V.

2. II. Signature Optimization for Spread-Spectrum Embedding

In this section we develop an optimized spread-spectrum (SS) steganographic system. To draw a

parallelism with conventional SS communications systems, in SS watermark (message) embedding the

watermark can be regarded as the SS signal of interest transmitted through a noisy “channel” (the

host). The disturbance to the SS signal of interest is the host data themselves plus potential external

noise due to physical transmission of the watermarked data and/or processing/attacking. The purpose

of the watermark detector is to withstand the influence of the total end-to-end disturbance and recover

the original hidden message.

A. Signal Model and Notation

Consider a host image H ∈MN1×N2 that is to be watermarked whereM is the image alphabet and

N1 ×N2 is the image size in pixels. Fig. 1(a) shows a grey scale baboon image example inMN1×N2 =

{0, 1, · · · , 255}256×256. Without loss of generality, the image H is partitioned into P local blocks of

size N1×N2
P pixels. Each block H1,H2, · · · ,HP is to carry one hidden information bit bp ∈ {±1}, p =

2
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Fig. 1. (a) Baboon image example H ∈ {0, 1, · · · , 255}256×256. (b) Host data autocorrelation matrix

(8× 8 DCT, 63-bin host).
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1, 2, · · · , P , respectively. Embedding is performed in a real 2-dimensional transform domain T . After

transform calculation and conventional zig-zag scanning vectorization, we obtain T (Hp) ∈ R
N1×N2

P ,

p = 1, 2, · · · , P . From the transform domain vectors T (Hp) we choose a fixed subset of L ≤ N1×N2
P

coefficients (bins) to form the final host vectors xp ∈ R
L, p = 1, 2, · · · , P (for example, it is common

and appropriate to exclude the dc coefficient T (Hp)[1] from the host xp).

The autocorrelation matrix of the host data x is an important statistical quantity for our develop-

ments and is defined as follows:

Rx
4
= E

{

xxT
}

=
1

P

P
∑

p=1

xpx
T
p (1)

where E {·} denotes statistical expectation (here, with respect to x over the given image H) and T is

the transpose operator. It is easy to verify that in general Rx 6= αIL, α > 0, where IL is the size-L

identity matrix; that is, Rx is not constant-value diagonal or “white” in field language. For example,

8 × 8 DCT with 63-bin host data formation (exclude only the dc coefficient) for the baboon image in

Fig. 1(a) gives the host autocorrelation matrix Rx in Fig. 1(b).

B. Signature Optimization

Consider direct additive SS embedding of the form

y = Abs + x + n (2)

where A > 0 is the bit amplitude, s ∈ R
L, ‖s‖ = 1, is the (normalized) embedding signature to be

designed, and n ∼ N
(

0, σ2
nIL

)

represents potential external white Gaussian noise1 of variance σ2
n. The

mean squared distortion of the original image due to the watermark only is

D = E
{

‖Abs + x− x‖2
}

= A2. (3)

With signal of interest Abs and total disturbance x + n in (2), the linear filter that operates on y

and offers maximum SINR at its output is

wmaxSINR = arg max
w

E
{

∥

∥wT (Abs)
∥

∥

2
}

E
{

‖wT (x + n)‖2
} =

(

Rx + σ2
nIL

)−1
s. (4)

The exact maximum output SINR value attained is

SINRmax =
E
{

∥

∥sT (Rx + σ2
nIL)−1Abs

∥

∥

2
}

E
{

‖sT (Rx + σ2
nIL)−1(x + n)‖2

} = A2sT
(

Rx + σ2
nIL

)−1
s. (5)

1Additive white Gaussian noise is frequently viewed as a suitable model for quantization errors, channel transmission
disturbances, and/or image processing attacks.
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We propose to view SINRmax as a function of the embedding signature s, SINRmax(s), and identify

the signature that maximizes the SINR at the output of the maximum SINR filter. Our findings are

presented in the form of a proposition below. The proof is straightforward and, therefore, omitted.

Proposition 1 Consider additive SS embedding according to (2). Let q1,q2, · · · ,qL be eigenvectors of

Rx in (1) with corresponding eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λL. For any watermark induced distortion

level D, a signature that maximizes the output SINR of the maximum SINR filter is

sopt = arg max
s

{

A2sT
(

Rx + σ2
nIL

)−1
s
}

= qL. (6)

When s = qL, the output SINR is maximized to

SINRmax(qL) = A2qT
L(Rx + σ2

nIL)−1qL =
A2

λL + σ2
n

=
D

λL + σ2
n

(7)

and maximum SINR data filtering simplifies to

wT
maxSINRy = qT

L(Rx + σ2
nIL)−1y ≡ qT

Ly. 2 (8)

In summary, Proposition 1 says that the “minimum” eigenvector of the host data autocorrelation matrix,

when used as the embedding signature, sends the output SINR to its maximum possible value D
λL+σ2

n
.

At the same time, maximum SINR filtering becomes plain signature (eigenvector) matched filtering.

If, in addition, we are allowed to assume that x is Gaussian, x ∼ N (0,Rx), then

b̂ = sign(wT
maxSINRy) (9)

is the optimum (minimum probability of error) bit detector [22] with probability of error

Pe = Q

(

A

√

sT (Rx + σ2
nIL)−1

s

)

= Q
(

√

SINRmax(s)
)

(10)

where Q(a) =
∫∞
a

1√
2π

exp
−τ2

2 dτ. We see that Pe is a monotonically decreasing function of SINRmax.

If we now view Pe as a function of the embedding signature s, Pe(s), then Proposition 2 below follows

directly from Proposition 1 and (10).

Proposition 2 Consider additive SS embedding according to (2) with x ∼ N (0,Rx). Let q1,q2, · · · ,qL

be eigenvectors of Rx with corresponding eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λL. For any watermark induced

distortion level D, a signature that minimizes the probability of error of the optimum bit detector is

sopt = arg min
s

{

Q
(

A

√

sT (Rx + σ2
nIL)−1

s
)

}

= qL. (11)
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When s = qL, the probability of error of the optimum detector is minimized to

Pe(qL) = Q

(
√

D
λL + σ2

n

)

(12)

and optimum detection reduces to

b̂ = sign
(

qT
Ly
)

. (13)

Conversely, for any preset probability of error level Pe, s = qL minimizes the watermark induced

distortion to

D =
(

λL + σ2
n

) [

Q−1 (Pe)
]2

. 2 (14)

Proposition 2 explains that under a Gaussian host data assumption the “minimum” eigenvector of the

host data autocorrelation matrix, when used as the embedding signature, allows message recovery with

the minimum possible bit error rate Q
(√

D
λL+σ2

n

)

and trivial signature (eigenvector) matched filter

detection. Conversely, the watermark induced image distortion D is minimized for any given target bit

error rate.

If necessary, further bit error rate improvements below Q
(√

D
λL+σ2

n

)

for any fixed distortion D can

be attained via error correcting coding of the information bits at the expense of reduced information

bit payload. The maximum possible payload in bits that still allows -theoretically for asymptotically

large number of image blocks P - message recovery with arbitrarily small probability of error is CP

where C = max
fb

I(b;y) is the Shannon capacity of the covert link in bits per embedding attempt. We

recall that I(b;y) identifies the information conveyed about the embedded bit b by the received vector

y and fb denotes the bit probability distribution function. For Gaussian host data x ∼ N (0,Rx) and

an average image distortion constraint D, we can calculate [23]

C =
1

2
log det

(

IL +D
(

Rx + σ2
nIL

)−1
ssT
)

(15)

where det(·) is the determinant operator. We can show that the signature choice s = qL is also optimal

in terms of capacity, i.e. maximizes the capacity C of the covert link and therefore the maximum

allowable payload CP for the host vectors xp ∈ R
L, p = 1, 2, · · · , P . The result is presented in the form

of Proposition 3 below whose proof is given in the Appendix.

Proposition 3 Consider additive SS embedding according to (2) with x ∼ N (0,Rx). Let q1,q2, · · · ,qL

be eigenvectors of Rx with corresponding eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λL. For any watermark induced

distortion level D, a signature that maximizes the covert channel capacity is

sopt = arg max
s

{

1

2
log det

(

IL +D
(

Rx + σ2
nIL

)−1
ssT
)

}

= qL. (16)

6



When s = qL, the covert channel capacity is maximized to

C(qL) =
1

2
log

(

1 +
D

λL + σ2
n

)

bits per bit embedding. 2 (17)

C. Signature Optimization for Linearly Transformed Host Data

In this section we generalize the previous developments and assume that the host data vector x can

be linearly transformed by an L×L operator of the form IL−cssT [18] where both the parameter c ∈ R

and the signature s ∈ R
L, ‖s‖ = 1, are to be designed2. In parallel to (2), the composite signal now

becomes

y = Abs + (IL − cssT )x + n (18)

and the mean squared distortion due to the watermarking operation only is

D = E
{

∥

∥Abs +
(

IL − cssT
)

x− x
∥

∥

2
}

= E
{

∥

∥

(

Ab− csT x
)

s
∥

∥

2
}

= A2 + c2sTRxs. (19)

We observe that, in contrast to (3), the distortion level is controlled not only by A but by s and c as

well.

With signal of interest Abs and total disturbance (IL − cssT )x + n in (18), the linear filter that

operates on y and offers maximum SINR at its output is

wmaxSINR = arg max
w

E
{

∥

∥wT (Abs)
∥

∥

2
}

E
{

‖wT ((IL − cssT )x + n)‖2
} =

((

IL − cssT
)

Rx

(

IL − cssT
)

+ σ2
nIL

)−1
s. (20)

The exact maximum output SINR value attained is

SINRmax = A2sT
((

IL − cssT
)

Rx

(

IL − cssT
)

+ σ2
nIL

)−1
s. (21)

In the following, we look at SINRmax as a function of both the embedding signature s and the parameter

c, SINRmax(s, c), and identify the signature and parameter values that jointly maximize the SINR at

the output of the maximum SINR filter. Our findings are presented in the form of a proposition below.

The proof is given in the Appendix.

Proposition 4 Consider additive SS embedding in linearly transformed host data according to (18).

Let q1,q2, · · · ,qL be eigenvectors of Rx with corresponding eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λL. For any

watermark induced distortion level D, a (signature s, parameter c) pair that maximizes the output SINR

of the maximum SINR filter is

sopt = arg max
s

{

A2sT
((

IL − cssT
)

Rx

(

IL − cssT
)

+ σ2
nIL

)−1
s
}

= qL (22)

2If c = 0, we revert to the developments of Section II.B. If c = 1, IL − css
T becomes the projector orthogonal to s.
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and

copt =
λL + σ2

n +D −
√

(λL + σ2
n +D)2 − 4λLD

2λL
. (23)

When s = qL and c = copt, the output SINR is maximized to

SINRmax(qL, copt) =
D − copt

2
λL

λL (1− copt)2 + σ2
n

(24)

and maximum SINR data filtering simplifies to

wT
maxSINRy = qT

L

((

IL − coptqLqT
L

)

Rx

(

IL − coptqLqT
L

)

+ σ2
nIL

)−1
y ≡ qT

Ly. (25)

The target distortion D is achieved when the bit amplitude is set at A =
√

D − copt2λL. 2

Proposition 4 shows that the optimum signature assignment is still the “minimum” eigenvector of

Rx and maximum SINR filtering still reduces to plain signature (eigenvector) matched filtering. The

optimum selection of c depends on the minimum eigenvalue of Rx, λL, the noise variance σ2
n, and the

target distortion level D. The optimum pair (sopt, copt) allows the output SINR to attain its maximum

possible value D−copt2

λL(1−copt)2+σ2
n
.

If we assume that x is Gaussian, x ∼ N (0,Rx), then b̂ = sign
(

wT
maxSINRy

)

is the optimum bit

detector with probability of error

Pe = Q

(

A

√

sT ((IL − cssT )Rx (IL − cssT ) + σ2
nIL)

−1
s

)

= Q
(

√

SINRmax(s, c)
)

. (26)

As in the plain additive SS embedding scenario, if x is Gaussian then the probability of error is a

monotonically decreasing function of SINRmax. The pair (sopt, copt) which maximizes the output SINR

of the maximum SINR filter is also minimizing the probability of error of the optimum detector. The

details are given in the following proposition.

Proposition 5 Consider additive SS embedding according to (18) with x ∼ N (0,Rx). Let q1,q2, · · · ,qL

be eigenvectors of Rx with corresponding eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λL. For any watermark induced

distortion level D, a (signature s, parameter c) pair that minimizes the probability of error of the opti-

mum bit detector is

sopt = arg min
s

{

Q

(

A

√

sT ((IL − cssT )Rx (IL − cssT ) + σ2
nIL)

−1
s

)}

= qL (27)

and

copt =
λL + σ2

n +D −
√

(λL + σ2
n +D)2 − 4λLD

2λL
. (28)
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When s = qL and c = copt, the probability of error of the optimum detector is minimized to

Pe(qL, copt) = Q

(
√

D − copt2λL

λL (1− copt)2 + σ2
n

)

(29)

and optimum detection reduces to b̂ = sign(qT
Ly). 2

Proposition 5 implies that the “minimum” eigenvector of the host data autocorrelation matrix when

used as the embedding signature together with copt allows message recovery with the minimum possible

probability of error Q

(√

D−copt2λL

λL(1−copt)2+σ2
n

)

(conversely, the induced distortion D is minimized for a given

target probability of error Pe). We can show that for Gaussian host data x, the covert channel capacity

is given by

C =
1

2
log det

(

IL +
(

D − c2sTRxs
) ((

IL − cssT
)

Rx (IL − css) + σ2
nIL

)−1
ssT
)

. (30)

Then, we can prove that the (sopt, copt) assignment of Proposition 5 is also optimal in terms of capacity.

This result is summarized in the following proposition whose proof is given in the Appendix.

Proposition 6 Consider additive SS embedding according to (18) with x ∼ N (0,Rx). Let q1,q2, · · · ,qL

be eigenvectors of Rx with corresponding eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λL. For any watermark induced

distortion level D, a (signature s, parameter c) pair that maximizes the covert channel capacity is

sopt = arg max
s

{

IL +
(

D − c2sTRxs
) ((

IL − cssT
)

Rx (IL − css) + σ2
nIL

)−1
ssT
}

= qL (31)

and

copt =
λL + σ2

n +D −
√

(λL + σ2
n +D)2 − 4λLD

2λL
. (32)

When s = qL and c = copt, the covert channel capacity is maximized to

C(qL, copt) =
1

2
log

(

1 +
D − copt

2
λL

λL(1− copt)2 + σ2
n

)

bits per bit embedding. 2 (33)

3.  III. Multi-Signature Embedding

We may generalize the signal model in (2) to cover multi-signature/multi-message embedding of the

form

y =

K
∑

i=1

Aibisi + x + n (34)

9



where bits b1, b2, . . . , bK , coming potentially from K distinct messages, are embedded simultaneously in

x with corresponding amplitudes Ai > 0 and embedding signatures si ∈ R
L, ‖si‖ = 1, i = 1, 2, . . . ,K.

Thus, the contribution of each individual embedded message bit bi to the composite watermarked signal

is Aibisi and the mean squared distortion to the original host data x due to the embedded message i

alone is

Di = E
{

‖Aibisi‖2
}

= A2
i , i = 1, 2, . . . ,K. (35)

Under a statistical independence assumption across message bits, the mean squared distortion of the

original image due to the total multi-message watermark is

D = E







∥

∥

∥

∥

∥

K
∑

i=1

Aibisi

∥

∥

∥

∥

∥

2






=

K
∑

i=1

Ai
2. (36)

With signal of interest Ajbjsj and total disturbance
∑K

i=1
i6=j

Aibisi + x + n in (34), the linear filter

that operates on y and offers maximum SINR at its output is

wmaxSINR,j = R−1
/j sj (37)

where R/j is the “exclude-j” data autocorrelation matrix, that is the autocorrelation matrix of the

disturbance to message j defined as

R/j
4
= E

















K
∑

i=1
i6=j

Aibisi+x+n













K
∑

i=1
i6=j

Aibisi+x+n







T








=
K
∑

i=1
i6=j

Ai
2sisi

T
+ Rx + σ2

nIL. (38)

The exact maximum output SINR value attained is

SINRmax,j = A2
js

T
j R−1

/j sj . (39)

As in Section II for single-message embedding, we propose to view SINRmax,j as a function of the

embedding signature sj , SINRmax,j(sj), and identify the signature vector that maximizes the SINR

value. Our findings are presented in the form of Proposition 7 below that parallels the developments of

Proposition 1 for the single-message case.

Proposition 7 Consider additive SS embedding according to (34). Let q1,q2, · · ·qL be eigenvectors of

R/j in (38) with corresponding eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λL. For any message induced distortion

level Dj, a signature that maximizes the output SINR of the maximum SINR filter wmaxSINR,j is

s
opt
j = arg max

s

{

A2
js

TR−1
/j s
}

= qL. (40)

10



When sj = qL, the output SINR is maximized to

SINRmax,j(qL) =
A2

j

λL + σ2
n

=
Dj

λL + σ2
n

(41)

and maximum SINR data filtering simplifies to wT
maxSINR,jy = qT

LR−1
/j y ≡ qT

Ly. 2

In summary, Proposition 7 says that the “minimum” eigenvector of the disturbance autocorrelation

matrix when used as the embedding signature allows the output SINR to attain its maximum possible

value
Dj

λL+σ2
n
. At the same time, maximum SINR filtering becomes plain signature (eigenvector) matched

filtering.

For fixed bit amplitude values Ai =
√Di and arbitrary signature initialization si ∈ R

L, ‖si‖ = 1, i =

1, 2, . . . ,K, consider repeated applications of Proposition 7 for j = 1, 2, . . . ,K. In such an eigen-update

signature cycle each signature is replaced by the minimum-eigenvalue eigenvector of the disturbance

autocorrelation matrix as seen by the message corresponding to that signature. Once all signatures are

updated, a second update cycle may begin. The whole procedure may continue for a predetermined

number of cycles m or until convergence:

sj(m)← min eigenvector
(

R/j(m)
)

, j = 1, 2, . . . ,K, m = 1, 2, . . . . (42)

It can be proven that convergence of (42) is guaranteed and, as shown in a code-division-multiple-

access (CDMA) literature context [24], at each cycle the generalized total squared correlation TSCg

of the signature set S
4
= [s1, s2, . . . , sK ], TSCg(S)

4
= trace

[

(

SA2ST + Rx + σ2
nIL

)2
]

where A
4
=

diag (A1, A2, . . . AK), is non-increasing 3.

If we consider channel coding the message bits before embedding and assume that the host x in

(34) is Gaussian, the steganographic system determined by the signature matrix S is a special case of

the K-user Gaussian multiple access channel with average input distortion constraints [23], [27]. For

such a channel, the sum capacity Csum (defined as the maximum sum of message coding rates at which

messages can be recovered reliably [27], [28]) is a reasonable criterion of quality for the signature set S

and equals

Csum(S,A2,Rx, σ2
n)=

1

2
logdet

(

IL+
(

Rx+σ2
nIL

)−1SA2ST
)

. (43)

Minimization of the TSCg(S) metric translates to maximization of Csum [28]. However, decrease in

TSCg at each cycle of the algorithm in (42) does not necessarily imply increase of Csum as seen for

instance in [29],[30] via binary signature examples.

3Yet, there is no guarantee that TSCg(S) will converge to its minimum possible value (global minimum) [25], [26].
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Apart from global optimality limitations, the multi-cycle multi-signature optimization procedure in

(42) requires re-calculation of the disturbance autocorrelation matrix and eigen decomposition at each

step of each cycle. A simple low-cost alternative to (42) could be a conditionally optimal single-cycle

design method based on the following proposition.

Proposition 8 Consider additive SS embedding according to

y = Al+1bl+1sl+1 +
l
∑

i=1

Aibisi + x + n. (44)

Let q1,q2, · · ·qL be eigenvectors of Rx in (1) with corresponding eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λL. If

the signatures si, i = 1, 2, . . . , l < L, are eigenvectors of Rx, then for any watermark induced distortion

level Dl+1 = A2
l+1 a signature sl+1 that maximizes the output SINR of the maximum SINR filter for the

bit of interest bl+1 subject to the constraint sT
l+1si = 0, i = 1, 2, . . . l, is

s
opt
l+1 =arg max

sl+1

sT
l+1

si=0







A2
l+1s

T
l+1

(

Rx+σ2
nIL+

l
∑

i=1

Aibisi

)−1

sl+1







=qj (45)

where qj is the minimum-eigenvalue eigenvector of Rx available.

When sl+1 = qj, the output SINR is (conditionally) maximized to

SINRmax(qj) =
A2

l+1

λj + σ2
n

=
Dl+1

λj + σ2
n

(46)

and maximum SINR data filtering simplifies to

wT
maxSINRy = qT

j (Rx + σ2
nIL)−1y ≡ qT

j y. (47)

If, in addition, we are allowed to assume that x ∼ N (0,Rx), then the optimum detector for the bit of

interest bl+1 is b̂l+1 = sign(qT
j y) with probability of error Pe(qj) = Q

(√

Dl+1

λj+σ2
n

)

. 2

As a simple illustration of the use of Proposition 8 for conditionally optimal multi-signature design,

suppose that we want to embed in the host data vector x ∈ R
L, K ≤ L message bits b1, b2, . . . , bK with

fixed corresponding amplitudes A1, A2, . . . , AK (mean squared distortions D1 = A2
1, D2 = A2

2, . . . , DK =

A2
K) and signatures s1, s2, . . . , sK to be chosen. By Proposition 1 of Section II, we set s1 equal to the

bottom eigenvector of Rx, s1 = qL. Given s1 = qL and under the constraint that we search for an

s2 orthogonal to s1, by Proposition 8 we design s2 = qL−1 which is the next available eigenvector of

Rx from the bottom. Given s1 = qL, s2 = qL−1 and under the constraint that we search for an s3

orthogonal to both s2 and s1, by Proposition 8 we assign s3 = qL−2. We continue this way until the

12



final assignment sK = qL−K+1. Once again, a welcome side effect of this conditionally SINR optimal

signature design procedure is that the maximum SINR receiver for each message bit bi, i = 1, 2, . . . ,K,

simplifies to a matched filter and requires no knowledge of other system parameters.

For (fixed) unequal embedding amplitude values A1, A2, . . . , AK , the exact order by which the eigen-

vectors of Rx are drawn to become signatures is important if we consider the sum capacity of the

steganographic system. We can show that a necessary condition for a maximum sum capacity solution

under the constraint of eigenvector assignment is that the ordering of the bit amplitudes be inversely pro-

portional to the ordering of the eigenvalues of the corresponding signature eigenvectors. This statement

is given below in the form of a lemma. The proof can be found in the Appendix.

Lemma 1 Consider additive SS embedding according to (34) with K ≤ L and let q1,q2, · · · ,qL be

eigenvectors of Rx with corresponding eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λL. Without loss of generality

assume that 0 ≤ A1 ≤ A2 ≤ · · · ≤ AK. Then,

Csum (sK = qL, . . . , sK−i = qL−i, . . . , s1 = qL−K+1) ≥

Csum (sK = qL, . . . , sK−i = qL−j , . . . , sK−j = qL−i, s1 = qL−K+1) , i, j ∈ {0, 1, . . . , K − 1}. 2

If we generalize our approach and view the individual amplitudes/distortions as design parameters

themselves, then we can search for the optimal amplitude assignment that maximizes sum capacity

subject to a total allowable distortion constraint DT =
∑L

i=1 A2
i . We derive the optimal amplitude

values in the lemma below. The proof is given in the Appendix.

Lemma 2 Consider additive SS embedding according to (34). Let q1,q2, · · · ,qL be eigenvectors of Rx

with corresponding eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λL. If the signatures si associated with the message bits

bi are distinct eigenvectors of Rx, si = qvi
, vi ∈ {1, · · · , L}, i = 1, 2, · · · ,K, then the sum capacity is

maximized subject to an expected total distortion constraint DT if

A2
i =

(

−
(

λvi
+ σ2

n

)

+ µ
)+

(48)

where (x)+
4
= max(x, 0) and µ is the Kuhn-Tucker coefficient [23] chosen such that the distortion

constraint DT =
∑K

i=1 A2
i is met. 2

To find the necessary parameter value µ in (48) we suggest to arrange the participating eigenvalues λvi
,

i = 1, 2, · · · ,K, in ascending order: λz1 ≤ λz2 ≤ · · · ≤ λzK
. Then,

µ =

∑J∗

i=1(λzi
+ σ2

n) +DT

J∗ (49)
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where the cutoff index J ∗ is the greatest integer in
{

J : J ∈ {1, 2, · · · ,K} and
∑J

i=1(λzi
+σ2

n)+DT

J >

λzJ
+σ2

n

}

. The optimal message amplitude/distortion allocation solution of Lemma 2 can be viewed as

a power waterfilling procedure [23] in the eigen domain of the host.

Finally, as the last technical development in this paper we examine the possibility of carrying out

multi-signature embedding in linearly transformed host data. We assume that the host data vector x

is linearly transformed by an L× L operator of the form IL −
∑K

i=1 cisis
T
i where ci ∈ R and si ∈ R

L,

‖si‖ = 1, i = 1, 2, · · · ,K, are the parameters and signatures to be designed. The final composite signal

is

y =

K
∑

i=1

Aibisi +

(

IL −
K
∑

i=1

cisis
T
i

)

x + n (50)

and the mean squared distortion induced by each individual message i, i = 1, 2, . . . ,K, is

Di = E
{

∥

∥

(

Aibi − cis
T
i x
)

si

∥

∥

2
}

= A2
i + c2

i s
T
i Rxsi. (51)

With signal of interest Ajbjsj, the autocorrelation matrix of the disturbance is R/j =
∑K

i=1
i6=j

Ai
2sisi

T +
(

IL −
∑K

i=1 cisis
T
i

)

Rx

(

IL −
∑K

i=1 cisis
T
i

)

+σ2
nIL. Unfortunately, in contrast to (38) for multi-signature

embedding in non-transformed data, R/j remains a function of sj (as well as cj). In this context, un-

conditionally optimal multi-signature multi-cycle optimization along the lines of (42) is practically an

unrealistic objective. Instead, we suggest to design sequentially the amplitudes Ai, parameters ci, and

signatures si of the embedded messages i = 1, 2, . . . ,K ≤ L, such that the output SINR is conditionally

maximized given all past fixed embeddings (single-cycle optimization). Our developments are presented

in the form of Proposition 9 below whose proof is given in the Appendix.

Proposition 9 Consider additive SS embedding according to

y = Al+1bl+1sl+1 +

l
∑

i=1

Aibisi +

(

IL −
l
∑

i=1

cisis
T
i − cl+1sl+1s

T
l+1

)

x + n. (52)

Let q1,q2, · · · ,qL be eigenvectors of Rx in (1) with corresponding eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λL. As-

sume that si, i = 1, 2, . . . , l < L, are all eigenvectors of Rx and j is the index of the minimum-eigenvalue

eigenvector of Rx available. For any given message induced distortion level Dl+1, an (sl+1, cl+1) pair

that maximizes the output SINR of the maximum SINR filter subject to the constraint sT
l+1si = 0,

i = 1, 2, . . . , l, is

s
opt
l+1 = arg max

sl+1

sT
l+1

si=0

{

A2
l+1s

T
l+1

(

l
∑

i=1

Ai
2sisi

T
+

(

IL−
l
∑

i=1

cisis
T
i −cl+1sl+1s

T
l+1

)

Rx

(

IL−
l
∑

i=1

cisis
T
i −cl+1sl+1s

T
l+1

)

+σ2
nIL

)−1}

= qj (53)
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and coptl+1 = arg max
cl+1

{

SINRmax(s
opt
l+1, cl+1)

}

=
λj + σ2

n +Dl+1 −
√

(λj + σ2
n +Dl+1)

2 − 4λjDl+1

2λj
. (54)

When sl+1 = qj and cl+1 = coptl+1, the output SINR is (conditionally) maximized to

SINRmax(qj , c
opt
l+1) =

Dl+1 − coptl+1

2
λj

λj

(

1− coptl+1

)2
+ σ2

n

(55)

and maximum SINR data filtering simplifies to qT
j y. If, in addition, we are allowed to assume that

x ∼ N (0,Rx), then the optimum detector for the bit of interest bl+1 is b̂l+1 = sgn(qT
j y) with probability

of error

Pe(qj , c
opt
l+1) = Q







√

√

√

√

√

Dl+1 − coptl+1

2
λj

λj

(

1− coptl+1

)2
+ σ2

n






. 2 (56)

As an illustrative example of the use of Proposition 9, suppose that we would like to embed in

the host data vector x, K ≤ L message bits b1, b2, . . . , bK with individual corresponding mean squared

host distortion D1,D2, . . . ,DK . We first design the system parameters s1, c1, and A1 for message

bit b1 in the absence of any other message in the host image. According to Proposition 9 (l = 0),

the optimal parameter selection is s1 = qL, c1 =
λL+σ2

n+D1−
√

(λL+σ2
n+D1)

2−4λLD1

2λL
, and by (51) A1 =

√

D1 − c2
1λL. Next, we proceed with the second message bit b2 and optimize s2 and c2 subject to

the desired distortion level D2 and the constraint sT
2 s1 = 0. Since s1 is already an eigenvector of

Rx, Proposition 9 (l = 1) offers s2 = qL−1, c2 =
λL−1+σ2

n+D2−
√

(λL−1+σ2
n+D2)

2−4λL−1D2

2λL−1
, and by (51)

A2 =
√

D2 − c2
2λL−1. We continue calculating signatures si, parameters ci, and amplitudes Ai as above,

always subject to the desired distortion Di and orthogonality between the signature to be designed and

all other prior signatures. Provided that K ≤ L, the final set of designed parameters is sK = qL−(K−1),

cK =
λL−(K−1)+σ2

n+DK−
√

(λL−(K−1)+σ2
n+DK)

2−4λL−(K−1)DK

2λL−(K−1)
, and AK =

√

DK − c2
KλL−(K−1).

Optimal distortion allocation for sum capacity maximization in multi-message embedding in linearly

transformed host data subject to the constraint that all messages are assigned distinct eigenvectors

of Rx, si = qvi
, and subject to a total distortion constraint DT =

∑K
i=1Di =

∑K
i=1

(

A2
i + ciλvi

)

,

vi ∈ {1, · · · , L}, i = 1, 2, . . . K, is a joint optimization problem with respect to ci and Ai. We suggest an

iterative solution approach based on Proposition 9 above and Lemma 2 presented earlier in this section.

We initially fix the distortions induced by each message and find the optimum ci parameters according

to Proposition 9. Then, we perform optimum amplitude allocation according to Lemma 2. Based on

this allocation, we re-evaluate all ci by Proposition 9. We continue until convergence is observed.
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(a) (b)

Fig. 2. (a) Aircraft image example (512 × 512 grey-scale). (b) Aircraft image after 20dB (sopt, copt)

embedding of 4Kbits and additive white Gaussian noise of variance 3dB.

4.  IV. Experimental Studies

To carry out an experimental study of the technical developments presented in the previous sections, we

consider as a host example the familiar grey scale 512×512 “Aircraft” image in Fig. 2(a) that has been

used widely in the pertinent literature. We perform 8 × 8 block DCT single-signature embedding over

all bins except the dc coefficient. Hence, our signature length is L = 63 and we embed 5122

82 = 4, 096

bits. For the sake of generality, we also incorporate white Gaussian noise of variance σ2
n = 3dB. Fig. 3

shows the recovery bit-error-rate (BER) under signature matched filter detection as a function of the

distortion created by the embedded message over the 0 to 20dB range for four different embedding

schemes: (a) SS embedding with an arbitrary signature, (b) SS embedding with an arbitrary signature

and optimized selection of the host data transformation parameter c as in [18] (known as “improved

spread-spectrum” or ISS), (c) SS embedding with an optimal signature according to Proposition 1, and

(d) SS embedding with a jointly optimal signature and host data transformation parameter (sopt, copt)

according to Proposition 4. The demonstrated BER improvement of our joint signature and parameter

optimization procedure in particular, measures in orders of magnitude. Fig. 2(b) shows the Aircraft

image after 20dB (sopt, copt)-embedding of the 4Kbit message and 3dB additive white Gaussian noise

disturbance in the block DCT domain.
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Fig. 3. Bit-error-rate versus host distortion (Aircraft image, σ2
n = 3dB).

In Fig. 4, we repeat the same experiment of Fig. 3 on the 256×256 grey scale Baboon image in Fig.

1(a) (signature length L = 63, hidden message of 2562

82 = 1, 024 bits, and additive white Gaussian noise

disturbance of variance 3dB). Comparatively speaking (Aircraft versus Baboon host or Fig. 3 versus

Fig. 4 results), message recovery for the Baboon host appears to be a somewhat more difficult problem.

Yet, the proposed joint signature and host transformation parameter optimization scheme maintains

a near 10−10 BER at 20dB host distortion and outperforms the proposed signature-only optimization

scheme by about eight orders of magnitude.

In Fig. 5, we continue our experimental work with the Baboon host and plot the capacity versus

distortion performance curves for the four embedders under consideration. We see, for example, that at

20dB host distortion the jointly optimized embedder offers 0.8 information bit payload per embedded

bit. This number goes down to 0.35 for signature only optimization, 0.18 for ISS embedding [18], and

0.15 for arbitrary signature embedding.

Next, we consider the problem of multi-signature embedding. We keep the Baboon image as the host

and wish to hide K = 15 data blocks/messages of length 1, 024 bits each with each block/message having

its own individual embedding signature. Each message is allowed to cause the same expected distortion

to the host Di = D, i = 1, . . . ,K. Therefore, for statistically independent messages, the total distortion
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Fig. 4. Bit-error-rate versus host distortion (Baboon image, σ2
n = 3dB).

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Distortion (dB)

C
ap

ac
ity

 (
bi

ts
 p

er
 b

it 
em

be
dd

in
g)

Arbitrary  s

ISS [15]

Proposed  sopt, c=0

Proposed  sopt, copt

Fig. 5. Capacity versus distortion (Baboon image, σ2
n = 3dB).
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Fig. 6. BER as a function of the per-message distortion D (baboon image, K = 15 messages of size
1, 024 bits each, σ2

n = 3dB).

to the host is
∑K

i=1Di = KD. As before, for the sake of generality, we add to the host white Gaussian

noise of variance 3dB. We study five different multi-signature embedding schemes: (a) Embedding

with arbitrary signatures, (b) ISS embedding [18], (c) multi-cycle eigen-signature design by (42), (d)

conditional optimization by Proposition 8 (sequential s
opt
i , ci = 0 assignment, i = 1, . . . , 15), and (e)

conditional optimization by Proposition 9 (sequential s
opt
i , copt

i assignment, i = 1, . . . , 15). As seen in

Fig. 6, the superiority of the latter approach (design by Proposition 9) is evident. In fact, under joint

sequential s
opt
i , copt

i optimization even the least favored message (i = 15) outperforms in recovery BER

the most favored (i = 1) message under sequential s
opt
i , ci = 0 signature-only optimization or multi-

cycle eigen-signature design for per-message distortion values above 18dB. Fig. 7 shows the Baboon

image after embedding the fifteen messages (15 · 1, 024 bits) via joint sequential s
opt
i , copt

i , i = 1, . . . , 15,

optimization with 20dB per-message distortion (31.8dB total distortion) and 3dB variance additive

white Gaussian noise.

Finally, in Fig. 8 we present sum capacity results when the two proposed schemes, sequential s
opt
i

design and sequential joint s
opt
i , copt

i design, i = 1, . . . , 15, employ waterfilling power allocation (use of

Lemma 2 alone or coupled use of Proposition 9 and Lemma 2, correspondingly). We see, for example,
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Fig. 7. Baboon image after multi-signature embedding via Proposition 9 (K = 15 messages of size

1, 024 bits each, per-message distortion 20dB, σ2
n = 3dB).
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that at 32dB total distortion the waterfilled s
opt
i , copt

i design offers information bit payload of about 11

bits per 15 bits embedded, while the waterfilled s
opt
i , ci = 0 design offers only about 4 bits per 15 bits

embedded.

5.  V. Conclusion

We considered the problem of hiding digital data in a digital host image (or audio) via spread-spectrum

embedding in an arbitrary transform domain. We showed that use of the minimum-eigenvalue eigen-

vector of the transform domain host data autocorrelation matrix as the embedding signature offers the

maximum possible SINR under linear filter message recovery and, conveniently, does so under plain

signature correlation (signature matched filtering). If we allow ourselves the added assumption of (col-

ored) Gaussian transform-domain host data, then we see that the above described system as a whole

becomes minimum probability of error and maximum Shannon capacity optimal as well.

To take these findings one step further, we examined SS embedding in transform-domain host data

that are modified by a parametrized projection-like linear operator. We found the joint signature and

parameter values under the optimality scenaria mentioned above. Conveniently, the jointly optimal

signature is still the minimum-eigenvalue eigenvector and the SINR optimal linear filter at the receiver

side is still the signature correlator. Yet, joint signature and parameter optimization was seen to offer

dramatic improvements in SINR, probabilty of error, and capacity (Figs. 3, 4, and 5, for example).

Finally, we extended our effort to cover multi-signature/multi-message embedding. First, under

signature-only optimization we developed a computationally costly multi-cycle eigen-signature design

scheme based on the disturbance autocorrelation matrices. The alternative suggestion based on the host

data autocorrelation matrix alone and sequential (conditional) eigen-signature optimization is practi-

cally much more appealing. A waterfilling amplitude assignment algorithm was developed as well to

maximize sum capacity under eigen-signature designs. All multi-signature findings were generalized to

cover parametrized projection-like modification of the host data with, once again, dramatic improve-

ments in probabilty of error or sum capacity (as seen in Figs. 6 and 8, for example).

As a brief concluding remark, image-adaptive signature(s) or signature(s)/parameter(s) optimiza-

tion as described in this work can be carried out over a set of host images (frames) if desired. The

only technical difference is the calculation of the host data autocorrelation matrix which now has to

extend over the whole host set. As long as the cumulative host autocorrelation matrix is not constant-

value diagonal (6= αI), significant gains are to be collected over standard non-adaptive SS embedding
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techniques.
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Appendix

Proof of Proposition 3

We need to find s that maximizes C in (15) subject to ‖s‖ = 1. Since log(·) is a strictly monotonic

function,

sopt = arg max
s∈RL, ‖s‖=1

det
(

IL +D
(

Rx + σ2
nIL

)−1
ssT
)

= arg max
s∈RL, ‖s‖=1

det

(

1

D
(

Rx + σ2
nIL

)

+ ssT

)

. (57)

Using the rank-one update rule [33],

det
(

1
D
(

Rx + σ2
nIL

)

+ ssT
)

= 1
DL det

(

Rx + σ2
nIL

)

(

1 +DsT
(

Rx + σ2
nIL

)−1
s
)

. Therefore,

sopt = argmax
s∈RL, ‖s‖=1

(

1 +DsT
(

Rx + σ2
nIL

)−1
s
)

= qL. 2 (58)

Proof of Proposition 4

For a target distortion value D, the term A2 in (21) equals D − c2sTRxs and is maximized for s = qL.

We will show that the second term in (21), sT
((

IL − cssT
)

Rx

(

IL − cssT
)

+ σ2
nIL

)−1
s, is maximized

by s = qL as well. By the matrix inversion lemma,

((

IL − cssT
)

Rx

(

IL − cssT
)

+ σ2
nIL

)−1

=
1

σ2
n

IL −
1

σ4
n

IL

(

IL − cssT
)

(

R−1
x +

1

σ2
n

(

IL − cssT
)2
)−1

(

IL − cssT
)

and (59)

(

R−1
x +

1

σ2
n

(

IL − cssT
)2
)−1

=

(

R−1
x +

1

σ2
n

IL

)−1

−
(

c2 − 2c
)

(

R−1
x + 1

σ2
n
IL

)−1
ssT

(

R−1
x + 1

σ2
n
IL

)−1

σ2
n + (c2 − 2c) sT

(

R−1
x + 1

σ2
n
IL

)−1
s

. (60)

Combining (59) and (60) we obtain

sT
((

IL − cssT
)

Rx

(

IL − cssT
)

+ σ2
nIL

)−1
s =

1

σ2
n

σ2
n − sT

(

R−1
x + 1

σ2
n
IL

)−1
s

σ2
n + (c2 − 2c) sT

(

R−1
x + 1

σ2
n
IL

)−1
s

. (61)

The derivative of the righthandside of (61) with respect to sT
(

R−1
x + 1

σ2
n
IL

)−1
s gives

1

σ2
n

−σ2
n (1 + c (c− 2))

(

σ2
n + c (c− 2) sT

(

R−1
x + 1

σ2
n
IL

)−1
s

)2 ≤ 0 ∀c ∈ R. (62)

Hence, sT
((

IL − cssT
)

Rx

(

IL − cssT
)

+ σ2
nIL

)−1
s is a decreasing function of sT

(

R−1
x + 1

σ2
n
IL

)−1
s.

Yet, λL

1+
λL

σ2
n

≤ sT
(

R−1
x + 1

σ2
n
IL

)−1
s ≤ λ1

1+
λ1
σ2

n

. Therefore,

arg max
s

{

sT
((

IL−cssT
)

Rx

(

IL−cssT
)

+σ2
nIp

)−1
s
}

= qL. (63)
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Since sopt = qL for any c,

max
c,s
{SINRmax} = max

c

{

max
s
{SINRmax}

}

= max
c

{ D − c2λL

σ2
n + λL + c(c− 2)λL

}

. (64)

By direct differentiation of the final expression in (64) and root selection, we obtain copt in (23). 2

Proof of Proposition 6

For the signal model in (18), the channel capacity is

C = max
fb:E{b2}≤D−c2sT Rxs

A2

I(b;y)=
1

2
log

det
((

D−c2sTRxs
)

ssT +
(

IL−cssT
)

Rx

(

IL−cssT
)

+ σ2
nIL

)

det ((IL − cssT )Rx (IL − cssT ) + σ2
nIL)

. (65)

Applying a rank-one update [33] to the determinant in the numerator, we obtain

C =
1

2
log
(

1 +
(

D − c2sTRxs
)

sT
((

IL − cssT
)

Rx (IL − css) + σ2
nIL

)−1
s
)

. (66)

The result follows from the proof of Proposition 4. 2

Proof of Lemma 1

The sum capacity of the channel in (34) provided that all signatures si associated with the message bits

bi are distinct eigenvectors of Rx (si = qvi
, vi ∈ {1, 2, · · · , L}, i = 1, 2, · · · ,K) is given by

Csum =
1

2
log

K
∏

j=1

(

1 +
A2

j

λvj
+ σ2

n

)

. (67)

Then, Csum (sK = qL, . . . , sK−i = qL−i, . . . , s1 = qL−K+1)− Csum (sK = qL, . . . , sK−i = qL−j , . . . ,

sK−j = qL−i, . . . , s1 = qL−K+1) = 1
2 log

(

1+
A2

K−i

λL−i+σ2
n

)

(

1+
A2

K−j

λL−j+σ2
n

)

(

1+
A2

K−i

λL−j+σ2
n

)

(

1+
A2

K−j

λL−i+σ2
n

) . But,
(

1 +
A2

K−i

λL−i+σ2
n

)

(

1 +
A2

K−j

λL−j+σ2
n

)

−

(

1 +
A2

K−i

λL−j+σ2
n

)

(

1 +
A2

K−j

λL−i+σ2
n

)

=
A2

K−i
−A2

K−j

λL−i+σ2
n
− A2

K−i
−A2

K−j

λL−j+σ2
n
≤ 0 for λ1 ≥ λ2 ≥ · · · ≥ λL and A1 ≤ A2 ≤

· · · ≤ AK . 2

Proof of Lemma 2

To identify the set of amplitudes (or equivalently distortions) that maximizes the concave sum capacity

function in (67) subject to the distortion constraint DT , we differentiate the Lagrange functional

L(A1, A2, · · · , AK) =
1

2

K
∑

j=1

log

(

1 +
A2

j

λvj
+ σ2

n

)

− µ1

K
∑

j=1

A2
j (68)

with respect to Aj and obtain

A2
j =

(

−
(

λvj
+ σ2

n

)

+ µ
)+

(69)

where µ = 1
2µ1

is the Kuhn-Tucker coefficient [23] chosen such that DT =
∑K

i=1 A2
i . Substitution of

the optimal amplitude allocation of (69) in (67) gives the maximum attainable sum capacity value
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Csum = 1
2 log

[

µJ∗
/
∏J∗

j=1(λzj
+ σ2

n)
]

where µ, J∗, and λzj
are as in (49). 2

Proof of Proposition 9

The output SINR of the maximum SINR filter for the signal model in (52) is

SINRmax =
(

Dl+1−c2
l+1s

T
l+1Rxsl+1

)

·

sT
l+1

((

IL−
l
∑

i=1

cisis
T
i −cl+1sl+1s

T
l+1

)

Rx

(

IL−
l
∑

i=1

cisis
T
i −cl+1sl+1s

T
l+1

)

+σ2
nIL+

l
∑

i=1

Aisis
T
i

)
−1

sl+1.
(70)

Let Q
4
= [q1,q2, . . . ,qL] be the matrix with columns the eigenvectors of Rx, Λ

4
= diag (λ1, λ2, . . . , λL)

the diagonal matrix with the eigenvalues of Rx, and p the number of available eigenvectors of Rx that

do not correspond to any si, i = 1, . . . , l. Since si, i = 1, . . . , l, are eigenvectors of Rx we can write

σ2
nIL +

l
∑

i=1

Aisis
T
i = QΛ1Q

T and

(

IL −
l
∑

i=1

cisis
T
i

)

Rx

(

IL −
l
∑

i=1

cisis
T
i

)

= QΛ2Q
T (71)

where Λ1 and Λ2 are diagonal matrices of dimension L×L. Consider the permutation matrix P which

partitions Q into Q̃ ∈ R
L×p that contains the available eigenvectors of Rx with the corresponding eigen-

values in descending order and Q∗ ∈ R
L×(L−p) that contains all used eigenvectors: QPT =

[

Q̃ Q∗
]

.

Let Λ̃ ∈ R
p×p and Λ∗ ∈ R

(L−p)×(L−p) be the diagonal matrices that contain the eigenvalues of the

eigenvectors in Q̃ and Q∗, respectively. Then,

PΛPT =





Λ̃ 0

0 Λ∗



 , PΛ1P
T =





σ2
nIp 0

0 Λ∗
1



 , and PΛ2P
T =





Λ̃ 0

0 Λ∗
2



 (72)

where Λ∗
1

and Λ∗
2

are diagonal matrices of dimension (L−p)× (L−p). Since Q is an orthonormal basis

of R
L we can write sl+1 as

sl+1 =
[

Q̃ Q∗
]





β̃

β∗



 = QPT





β̃

β∗



 (73)

where β̃ ∈ R
p and β∗ ∈ R

L−p. The constraint sT
l+1si = 0, i = 1, 2, . . . , l, is equivalent to β∗ = 0. Hence,

sl+1 = QPT





β̃

0



 . (74)

The unit norm requirement, ‖sl+1‖ = 1, implies that
[

β̃
T

0T
]

PQTQPT





β̃

0



 = 1 or
∥

∥

∥β̃

∥

∥

∥ = 1.

We want to find s
opt
l+1 = arg max

sl+1

{SINRmax} subject to ‖sl+1‖ = 1 and sT
l+1si = 0, i = 1, 2, . . . , l.

Substituting sl+1 from (74) to the first term in (70) we obtain

Dl+1−c2
l+1s

T
l+1Rxsl+1 = Dl+1 − c2

l+1β̃
T
Λ̃β̃. (75)
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Using (71) and (74), the second term in (70) becomes

[

β̃
T
0T

]







IL−cl+1





β̃

0





[

β̃
T
0T

]



PΛPT



IL−cl+1





β̃

0





[

β̃
T
0T

]



−P(Λ−Λ1−Λ2)P
T





−1



β̃

0



 (76)

which using (72) reduces to

[

β̃
T

0T
]





(

Ip−cl+1β̃β̃
T
)

Λ̃
(

Ip−cl+1β̃β̃
T
)

+σ2
nIp 0

0 Λ̃∗
1+Λ̃∗

2





−1



β̃

0



 . (77)

We know that if a matrix A =





A11 A12

A21 A22



 is invertible and A−1
11 , A−1

22 exist, then A−1 =





(

A11 −A12A
−1
22 A21

)−1 (

A11 −A12A
−1
22 A21

)−1
A12A

−1
22

(

A22 −A21A
−1
11 A12

)−1
A21A

−1
11

(

A22 −A21A
−1
11 A12

)−1



 [34]. Hence, (77) reduces fur-

ther to

β̃
T
((

Ip−cl+1β̃β̃
T
)

Λ̃
(

Ip−cl+1β̃β̃
T
)

+σ2
nIp

)−1
β̃. (78)

Using (75) and (78), the initial optimization problem can be written equivalently as

β̃ = arg max
β̃

{

(

Dl+1 − c2
l+1β̃

T
Λ̃β̃
)

β̃
T
((

Ip−cl+1β̃β̃
T
)

Λ̃
(

Ip−cl+1β̃β̃
T
)

+σ2
nIp

)−1
β̃

}

(79)

subject to
∥

∥

∥β̃

∥

∥

∥ = 1. We will show that both terms in (79), Dl+1−c2
l+1β̃

T
Λ̃β̃ and β̃

T
((

Ip−cl+1β̃β̃
T
)

Λ̃
(

Ip−cl+1β̃β̃
T
)

+σ2
nIp

)−1
β̃, are maximized by the same β̃. For the first term we have:

arg max
β̃

{

Dl+1 − c2
l+1β̃

T
Λ̃β̃
}

= arg min
β̃

{

β̃
T
Λ̃β̃
}

= minimum eigenvector of Λ̃. (80)

Consider now the second term. By the matrix inversion lemma,

((

Ip − cl+1β̃β̃
T
)

Λ̃
(

Ip − cl+1β̃β̃
T
)

+ σ2
nIp

)−1

=
1

σ2
n

Ip −
1

σ4
n

Ip

(

Ip − cl+1β̃β̃
T
)

(

Λ̃−1 +
1

σ2
n

(

Ip − cl+1β̃β̃
T
)2
)−1 (

Ip − cl+1β̃β̃
T
)

. (81)

Using the matrix inversion lemma again,

(

Λ̃−1 +
1

σ2
n

(

Ip − cl+1β̃β̃
T
)2
)−1

=

(

Λ̃−1 +
1

σ2
n

Ip

)−1

−
(

c2
l+1 − 2cl+1

)

(

Λ̃−1 + 1
σ2

n
Ip

)−1
β̃β̃

T
(

Λ̃−1 + 1
σ2

n
Ip

)−1

σ2
n +

(

c2
l+1 − 2cl+1

)

β̃
T
(

Λ̃−1 + 1
σ2

n
Ip

)−1
β̃

. (82)

26



Combining (81) and (82) we have

β̃
T
((

Ip − cl+1β̃β̃
T
)

Λ̃
(

Ip − cl+1β̃β̃
T
)

+ σ2
nIp

)

−1

β̃ =
1

σ2
n







σ2
n − β̃

T
(

Λ̃−1 + 1

σ2
n

Ip

)

−1

β̃

σ2
n +

(

c2
l+1
− 2cl+1

)

β̃
T
(

Λ̃−1 + 1

σ2
n

Ip

)

−1

β̃






.

(83)

Differentiation of the righthandside of (83) with respect to β̃
T
(

Λ̃−1 + 1
σ2

n
Ip

)−1
β̃ gives

1
σ2

n

−σ2
n(1+cl+1(cl+1−2))

(

σ2
n+cl+1(cl+1−2)β̃

T
(

Λ̃−1+ 1

σ2
n
Ip

)−1

β̃

)2 ≤ 0 ∀cl+1 ∈ R. Hence, 1
σ2

n

σ2
n−β̃

T
(

Λ̃−1+ 1

σ2
n
Ip

)−1

β̃

(

σ2
n+cl+1(cl+1−2)β̃

T
(

Λ̃−1+ 1

σ2
n
Ip

)−1

β̃

) is

a decreasing function of β̃
T
(

Λ̃−1 + 1
σ2

n
Ip

)−1
β̃. However, λ̃min

1+
λ̃min

σ2
n

≤ β̃
T
(

Λ̃−1 + 1
σ2

n
Ip

)−1
β̃ ≤ λ̃max

1+ λ̃max

σ2
n

where λ̃min and λ̃max are the minimum and maximum eigenvalues in Λ̃. Therefore,

arg max
β̃

{

β̃
T
((

Ip−cl+1β̃β̃
T
)

Λ̃
(

Ip−cl+1β̃β̃
T
)

+σ2
nIp

)−1
β̃

}

= minimum eigenvector of Λ̃. (84)

We conclude (cf. (79), (80), (84), and (74)) that the SINR expression in (70) is maximized when s l+1

is the minimum available eigenvector of Rx for any cl+1. Hence,

max
cl+1,sl+1

{SINRmax} = max
cl+1

{

max
β̃

{

(

Dl+1 − c2
l+1β̃

T
Λ̃β̃

)

β̃
T
((

Ip − cl+1β̃β̃
T
)

Λ̃
(

Ip − cl+1β̃β̃
T
)

+ σ2
nIp

)

−1

β̃

}}

= max
cl+1

{ Dl+1 − c2
l+1

λj

σ2
n + λj + cl+1(cl+1 − 2)λj

}

(85)

where λj is the minimum available eigenvalue of Rx (equivalently λj is the bottom element of Λ̃, λj =

λ̃min). The optimum cl+1 value can be computed by setting the derivative of the last expression in (85)

equal to zero. The latter gives two candidate values for cl+1. We select the value that maximizes (85),

which is the one in (54). 2
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